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Inhomogeneous Mean Field Models 
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The infinite set of coupled mean field equations for a classical inhomogeneous 
Ising ferromagnet is studied with respect to existence and uniqueness of its 
solutions. 
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1. I N T R O D U C T I O N  

We consider classical non-translation-invariant ferromagnetic lattice mod- 
els. For some really interesting models one is able to derive partial results, 
but obtaining the full solution remains in general a pious hope. Yet, some 
idea and insight into the behavior of the model (e.g., bounds on the critical 
temperature t 1-3)) can be obtained from the so-called mean field approxima- 
tion. 

In the case of translation-invariant systems this procedure is well 
known and leads to the solution of a set of equations for a finite number of 
spin variables (e.g., the components of the spin). These equations represent 
the Euler equations extremizing the free energy over a subset of states, 
namely, the product measures. These are the well-known self-consistency 
equations. 

Here we are interested in the non-translation-invariant situation. Physi- 
cally these models describe local perturbations of translation-invariant 
systems or inhomogeneous-temperature systems. They might show a phase 
transition even in one dimension with short-range interactions. (4) The 
particular mean field form of these models is defined in Section 2. These 
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systems yield an infinite set of coupled equations [see Eqs. (2) below]. In 
terms of the interaction parameters we prove the existence and uniqueness 
of the constant sign solutions of these equations (see Theorem 1) and 
obtain the critical temperature explicitly in terms of the coupling constants. 
This result can be compared with the lower bound of the exact critical 
temperature of the original models. ~5) Furthermore, alternating sign solu- 
tions are not excluded and are discussed in Section 4. 

2. MEAN FIELD MODELS 

Consider the lattice 7/, where a single spin is situated at each lattice 
site. The configuration space of the system is X = ( -  1, 1 )z and let the spin 
observables o k be the functions mapping x - (Xk) ~ X---)Xk. 

Let # be any product measure on X; define the local model Hamilto- 
nian for any finite interval A c 77 

= - E [ s , # ( o , + , )  + J,-,#(o,-,)]o, (1) 
i~A 

where J; represents the interaction energy between the sites i and i + 1. We 
restrict ourself to the case that Ji > 0 for all i ~ 7/. 

The Gibbs state determined by the Hamiltonian (1) defines a product 
measure on X leading in the usual way to the self-consistent equations for 
#(ok) (k ~ 7/): 

#(ok) = th f l(Jk#(Ok+ ,) + Jk-1 #(Ok-1)) ,  k ~ 7/ (2) 

We are interested in the solutions of Eqs. (2). One checks readily the 
trivial facts that #(ok) = 0 for all k E 7/is a solution and that, if #(ok) :/: 0 is 
a solution, then also -# (ok)  is a solution. 

3. POSITIVE SOLUTIONS 

We restrict ourself first to solutions of (2) such that for all k ~ Z : #(Ok) 
t> 0. The local interaction energies Ji (i ~ 7/) define a linear operator J on 
the space C z as follows: 

(Ja)k---- f l (Jk_lak_]  + Jkak+l) (3) 

for all a ~ C z. In this notation, the equations (2) become 

a k = th(Ja)k,  k E 7/, a >1 0 (4) 

where a 1> 0 stands for a k/> 0 for all k E Z. If j12(7/) C_/2(7/), denote by ]lJII 
the norm of J restricted to/2(7/).  Now we formulate our main result: 
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Theorem 1. 
more 

(i) 
(ii) 

The equations (4) admit at most two solutions. Further- 

[IJ[I < 1 if and only if (4) admits the unique solution a = 0. 
If IIJII > 1 or if J is an unbounded operator on 12(Z) [i.e., 
jl2(Z) ~ 12(Z)], then (4) admits exactly two solutions (a I = 0 and 
a2 > 0). 

We prove this theorem in the following steps. 

Lemma 2. If a and b are solutions of (4) then there exists a third 
solution c such that a < c and b < c. 

Proof. Let 

V.,b = {d eRZld > a , d  > b, 1 >1 d }  

Consider the map F from R Z into itself defined by 

F ( d ) k =  th(Jd)k, d ~ R z 

then F is continuous for the product topology. Remark also that the set Va, b 
is compact and convex and as for d ~ V.,b: 

F ( d ) k =  th(Jd)k>>- th(Ja)k-- ak 

and 
F ( d ) k  ~ bk 

Va, b is invariant for F 

By a fixed point theorem (Ref. 6, Theorem V. 19) we get the desired solution 
cEVa,b. I 

i . emma 3, If a and b are solutions of (4) such that 0 < a < b then 
a = b .  

Proof. 

Hence 

o r  

Suppose a =P b. As 0 < a k < bk (k  E Z) by convexity 

ak ak th(Jb)k < th ak ( j b )  k th( J a ) k =  ak = -~k bk = -~k 

(Sb)  

I k =-- Jk(ak+,bk -- akbk+,) + Jk_ , (ak_]b  k -- akb~_,) x< 0 (5) 

Remark that the function 

ak k w - > -  bk (6) 
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is monotonic or that there exists at most one index k 0 ~ 2[ such that the 
function is monotonically increasing for k < k o and monotonically decreas- 
ing for k/> k 0. Indeed, suppose that there exists k 1 E Z such that 

akl-._____~ 1 >~ ak~ ak~+l  

bk,-1 ~ < bk~ + 1 

then from (5) 

ak~ - 1 

bk~ - 1 

Let X = ak,/bk, then 

ak, = th(Ja)k ' 

ak  t ak~ + 1 

bk~ bk~ + 1 

and hak, = th(J~a)k  ' 

Hence from the strict convexity of th :X = 0 or h = 1. The case h = 0 is 
excluded because then a = 0 from (4). Furthermore if h = 1, the equations 
(4) yield a -- b. Suppose first that the function (6) is monotonically decreas- 
ing for k/> k 0, i.e., 

ak-lbk -- akbk-l  • 0, k >/k o + 1 (7) 

From (5) f o r k > /  k 0 + 1  

n 

Ik+t = J k - , ( a k - , b k  -- akbk_,) 
l = 0  

+ Jk+.,(ak+,+.bl.+. -- ak+.bk+l+.) < 0 (8) 

Suppose there exists a sequence (nj}j with nj tending to infinity such that 

limJk+~(ak+ , +~bk +.j -- ak +~bk + l+~) ----" 0 (9) 
J 

then from (8) and (7) 

a k _  l b  k - -  a k b k _  1 = 0 

and again from (4): a = b. 
It remains to prove the existence of such a sequence. As the function 

(6) is decreasing the following limit exists: 

lira ak + . 
n ~  b k +  n 

Hence 

nl inl  ( a k  + l + nbk  + n - -  ak  + nbk  + l + n) --- 0 
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Therefore  if there exists a sequence (nj) j  such that  sup,~>0J,j < oo, (9) is 

satisfied. On the other  h a n d  suppose  lim,__,ooJ~ = oo. F r o m  (4) and  the 
convexi ty  of  th 

Therefore  

t h J  k < ak + l < 
ak thJk  

bk+ 1 1 

l im Jk + ,lak + l + nbk + n -  ak + ,bk + l + ,l n--) oo 

= lim Jk+,ak+,bk+,  ak+l+, bk+l+, I 
n-~oo ak+ n bk+ ~ 

i 

( < l i m J ~ + ,  t h J k + ,  

Finally,  the case that  the funct ion (6) is monoton ica l ly  increasing is t reated 
analogously.  The  result is now ob ta ined  by  summing  up (5) but  for  n < 0. 

[] 

In  order  to get the proof  of the first s ta tement  of T h e o r e m  1, it is now 
sufficient to prove  the following: 

t . e m m a  4. If  a is a solution of (4) such that  a =/= 0, then a > 0. 

Proof.  Suppose  that  ate0 = 0; then f rom (4), ako_ I = ak0+ l = 0 and  by  
recursion a = 0. Hence  all a k > 0. []  

N o w  we proceed  to the p roof  of (i) and  (ii) of  T h e o r e m  1. For  n, m ~ 7/ 
and  n < m, denote  by  P " ' '  the project ion of C z onto  C ("'"+ i . . . . .  m} and  by  

j n , m  = p n , m j p n , m  

Lemma 5. If  JlJll > 1 or Jl2(7)  r 12(7/) then there exist n and  m in 
Z, n < m such that  IIJ "'m[I > 1. 

Proof .  If  [[J'"~l[ < 1 for  all n , m  ~ Z, as for all x ~ p n ' m c Z  

J x  = j n -  I'm+ lx 

it follows that  I[Jl[ < 1. []  

Lemma 6. If  [JJJ[ > 1 or  J12(~ z) ~ 12(7/) then there exists a solution 
a =/= 0 of  (4). 
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Proof. From Lemma 5 there exist n and m in Z, n < m such that 
IlJn,mll > 1. From Perron's theorem there exists a vector z ~ Pn'mcZ such 
that I[zll = 1, z/c >i 0 for all k ~[n ,m] and 

J","z = IIJ""llz 

Let k ~ [n,m], as I[J"'mll > 1 the equation 

~ k  = th I ,L( jn 'mZ)k = th i~llJ""l[Zk 

has at least one solution /~ -  ?'k > 0. Let h = min~Et,,,,lh k > 0; then as 
Jz >>. J""z:  

hz k < thh(Jz)k, k ~ Z 

Now using the fixed point theorem on the function F as in the proof of 
Lemma 2 to the region 

one gets a nonzero solution of (4). �9 
Finally the proof of theorem 1 is completed by the following lemma. 

Le mm a  7. Suppose that a is a nonzero solution of (4), then IIJII > 1 
or J12(7/) r 12(Z) 

Proof. Suppose IIJII < 1 and a is a solution of (4) such that a =~ 0. 
From (4) we have 

a k = th(Ja)k ~< (Ja)k (10) 

If a E 12(7/) then 

As J - -  J* and IIJII < 1: 

( ( J -  1)a,a) >/0 

k 

By Lemma 4: a~ > 0, therefore 

(JaL= = th(Ja L 

hence a~ = 0, which is a contradiction. Suppose now that a ~ 12(Z). From 
(10) again 

0 < ( e ; J ( J - 1 ) a , e % )  

= ((J  - 1) eiJa, eiJa) + Ji - la , - la i  + Jjaj+ laj 

<<. Ji_,ai_lai + Jjaj+la j (11) 

Suppose that there exist sequences {jk} tending to plus infinity and {ik} 
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tending to minus infinity such that 

lh~l(Jik_]aik_,aik + Jjkajk+,ajk) = O 

then from (11) again a~ = 0 by the argument above. 
Suppose now that there exists c > 0 such that for all i, j 

J i - la i  - lai + Jj.aj+ laj >~ 2E 

Then there exists a sequence (ik) or ( jk)  tending to minus or plus infinity 
such that 

(Ja)i,>~ Ji~-lai~-laik >1 , 

or the corresponding inequalities for the jk's. Observing that the function 
y - th y ( y  ~ •) is increasing one gets 

( Ja ) i~ -  ai~ = (Ja) i  ~ -  th(Ja)i~ 

i> c - t h e  
Also ai~ = th(Ja)i k/> the. 
Therefore using (10) 

( p i , . j ( j  _ 1)a, pi~Ja) >1 k(E - thQth~ 

which contradicts (11) as k ~ oo. [] 

4. ALTERNATING SIGN SOLUTIONS 

First of all we warn the reader here that we have no claims of 
characterizing in full detail the complete set of solutions of Eq. (2). We 
provide some examples of systems with alternating sign solutions. They 
show that in general the set of solutions can be very large, containing 
solutions of quite different types. 

The only general result we can state is the following: 

Proposition 8. If a is a nonzero positive solution of Eq. (2) then any 
other solution b satisfies 

I bkl < ak for all k E Z 

Proof .  By repeating literally the proof of Lemma 2 we get the 
existence of a positive solution c such that a < c and b < c. By Theorem 1, 
a --- c. Hence b < a. Observe now that - a  is the unique nonzero negative 
solution. Consider now the set V_a, b = (d  E •z[ d < - a , d  < b, - 1 <<. d ) .  
By the same argument as above: b ~ - a .  [] 
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This property implies that there are no solutions with alternating sign 
if zero is the unique nonnegative solution. Hence nonzero alternating sign 
solutions occur only at lower temperatures if they occur at all. 

Finally we give some examples of solutions of nonconstant  sign. 
Periodic solutions are easily obtained for periodic systems, e.g., take the Jk 
such that 

Jk = Jk+6 for all k E g 

Jo = Js,  J2 = J3, J i = J4 > 1 

Then a solution of Eq. (2) is given by a k = ak+ 6 for all k E 7/, a 0 = a 3 = 0 
and a I = a 2 = - a 4 = - a 5 =  a where a is the nonzero solution of a 
= t h J l t h J l a .  

Note that these examples extend to higher period solutions. Further- 
more the translation-invariant case is included in these systems. 

For  non-translation-invariant systems there are also systems with alter- 
nating sign solutions but not periodic, e.g., take the system 

J j = J >  I for k = 0 , 1 , 2  . . . .  and k = - 3 , - 4  . . . .  

and J _  ~ and J - 2  > 1 to be determined later on. Take the nontrivial 
solution of a = thJ thJo t .  Consider again the fixed point solution b in 
V a = ( d  E •Uo [ d >1 a ), where a is now (a, a, 0, 0, 0 . . . .  ), of the mapping 

F ( b ) l  = thJb2 

F ( b ) k  = thJ(bk+ , + bk_,) ,  k >>. 2 

Clearly b 1 > 0. Take the negative solution b I of b_ l = t h J z t h J 2 b  l 
and choose J ~ = - J b l / b _  l ; then 

( . . . .  b 2 , b l , O , b _ l , b _ l , O ,  b l , b  2 . . . .  ) 

is a solution of Eq. (2). 
Such solutions do remember  Dobrushin's  result (7~ for the Ising model 

in three or more dimensions where equilibrium states are constructed with 
magnetization changing f rom m to - m  and further work on non- 
translation-invariant states. {8'9) In this context our result may be relevant as 
a one-dimensional molecular field model for an interface. 
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